
CS/ECE/ISyE 524 Introduction to Optimization Spring 2017–18

7. Dual flows and algorithms

� Duality review

� Minimum-cost flow dual

� Specialized flow duals

� Max-flow problems

� LP solvers

� Wrap-up

Laurent Lessard (www.laurentlessard.com)

www.laurentlessard.com

Duality review

Every LP has a dual, which is also an LP.

� Every primal constraint corresponds to a dual variable

� Every primal variable corresponds to a dual constraint

Minimization Maximization

Nonnegative variable ≥ Inequality constraint ≤
Nonpositive variable ≤ Inequality constraint ≥
Free variable Equality constraint =

Inequality constraint ≥ Nonnegative variable ≥
Inequality constraint ≤ Nonpositive variable ≤
Equality constraint = Free Variable

7-2

Duality review

max
x

cTx (maximization)

s.t. Ax ≤ b (constraint ≤)

x ≥ 0 (variable ≥)

min
λ

bTλ (minimization)

s.t. λ ≥ 0 (variable ≥)

ATλ ≥ c (constraint ≥)

LP with every possible variable and constraint:

max
x ,y ,z

cTx + dTy + f Tz min
λ,η,µ

pTλ+ qTη + rTµ

s.t. Ax + By + Cz ≤ p λ ≥ 0

Dx + Ey + Fz ≥ q η ≤ 0

Gx + Hy + Jz = r µ free

x ≥ 0 ATλ+ DTη + GTµ ≥ c

y ≤ 0 BTλ+ ETη + HTµ ≤ d

z free CTλ+ FTη + JTµ = f

7-3

Minimum-cost flow problems

2

1

4

3

5
7

6

8

� Decision variables: xij is the flow on edge (i , j) ∈ E .

� Capacity constraints: pij ≤ xij ≤ qij ∀(i , j) ∈ E .

� Conservation:
∑

j∈N xkj −
∑

i∈N xik = bk ∀k ∈ N .

� Total cost:
∑

(i ,j)∈E cijxij .

Either bi > 0 (source), bi < 0 (sink), or bi = 0 (relay).
Also, assume

∑
i∈N bi = 0 (model is balanced).

7-4

Minimum-cost flow problems

2

1

4

3

5
7

6

8

The entire model (compact form):

minimize
x∈R|E|

cTx

subject to: Ax = b

p ≤ x ≤ q

Note: from now on, we will assume p = 0.

7-5

Dual of minimum-cost flow problems

min
x

cTx (minimization)

s.t. Ax = b (constraint =)

x ≤ q (constraint ≤)

x ≥ 0 (variable ≥)

� balance constraints (at nodes)

� capacity constraints (on edges)

� flow variables (on edges)

max
µ,η

bTµ+ qTη (maximization)

s.t. µ free (variable free)

η ≤ 0 (variable ≤)

ATµ+ η ≤ c (constraint ≤)

� dual variables (at nodes)

� dual variables (each edge)

� dual constraints (each edge)

Next: what does the dual mean for:
transportation? planning? max-flow?

7-6

Transportation

min
x

cTx (minimization)

s.t. Ax = b (constraint =)

x ≤ q (constraint ≤)

x ≥ 0 (variable ≥)

� balance constraints (at nodes)

� capacity constraints (on edges)

� flow variables (on edges)

max
µ,η

bTµ+ qTη (maximization)

s.t. µ free (variable free)

η ≤ 0 (variable ≤)

ATµ+ η ≤ c (constraint ≤)

� dual variables (at nodes)

� dual variables (each edge)

� dual constraints (each edge)

Transportation/transshipment/assignment problems:
no capacity constraints on edges

7-7

Transportation (primal)

min
x

cTx (minimization)

s.t. Ax = b (constraint =)

x ≥ 0 (variable ≥)

max
µ

bTµ (maximization)

s.t. µ free (variable free)

ATµ ≤ c (constraint ≤)

min
x

c12x12 + c13x13 + c14x14 + c23x23 + c34x34

s.t. x12 + x13 + x14 = b1

−x12 + x24 = b2

−x13 + x34 = b3

−x14 − x24 − x34 = b4

xij ≥ 0 ∀i , j

1

2

3

4

x12, c12

x13, c13

x14, c14

x24, c24

x34, c34
b3

b2

b1 b4

� xij are flow amounts along edges.

� Node constraints: flow is conserved and supply/demand is met.

� Edges have transportation cost. Pick xij to minimize total cost.

7-8

Transportation (dual)

min
x

cTx (minimization)

s.t. Ax = b (constraint =)

x ≥ 0 (variable ≥)

max
µ

bTµ (maximization)

s.t. µ free (variable free)

ATµ ≤ c (constraint ≤)

max
µ

b1µ1 + b2µ2 + b3µ3 + b4µ4

s.t. µ1 − µ2 ≤ c12

µ1 − µ3 ≤ c13

µ1 − µ4 ≤ c14

µ2 − µ4 ≤ c24

µ3 − µ4 ≤ c34

1

2

3

4

c12

c13

c14

c24

c34

µ3, b3

µ2, b2

µ1, b1 µ4, b4

A shipping company wants to get in on this business.

� will buy commodity from sources (to alleviate supply)

� will sell commodity to destinations (to satisfy demand)

� at node i , the buy/sell price will be πi = −µi .
7-9

Transportation (dual)

min
x

cTx (minimization)

s.t. Ax = b (constraint =)

x ≥ 0 (variable ≥)

max
π

− bTπ (maximization)

s.t. π free (variable free)

− ATπ ≤ c (constraint ≤)

max
π

−(b1π1 + b2π2 + b3π3 + b4π4)

s.t. π2 − π1 ≤ c12

π3 − π1 ≤ c13

π4 − π1 ≤ c14

π4 − π2 ≤ c24

π4 − π3 ≤ c34

1

2

3

4

c12

c13

c14

c24

c34

π3, b3

π2, b2

π1, b1 π4, b4

� πi is buy/sell price of commodity at node i (shift-invariant!).

� Edge constraints: ensures the prices are competitive. e.g. if we
had π2−π1 > c12, it would be cheaper to transport it ourselves!

� Pick prices πi to maximize total profit.

7-10

Transportation summary

Primal problem:

� Pick how much commodity flows along each edge of the
network to minimize the total transportation cost while
satisfying supply/demand constraints.

� If each supply/demand bi is integral, flows will be integral.

Dual problem:

� Pick the buy/sell price for the commodity at each node of
the network to maximize the total profit while ensuring that
the prices are competitive.

� If each edge cost cij is integral, prices will be integral.

7-11

Longest path

Recall the house-building example, a longest-path problem.

� Add source and sink nodes l,3

o,3 m,1 n,2

s,2

t,3

7-12

Longest path

Recall the house-building example, a longest-path problem.

� Add source and sink nodes

� Move times out of nodes and
onto preceding edges

� Solve longest-path problem

l

o m n

s

t

3
1

2

2
3

3

2

3

0

7-13

Longest path (primal)

Recall the house-building example, a longest-path problem.

maximize
x

cTx

subject to: Ax = b

x ≥ 0

unit flow: b =


1
0
...
0
−1



l

o m n

s

t

3
1

2

2
3

3

2

3

0

7-14

Longest path (dual)

Recall the house-building example, a longest-path problem.

minimize
µ

bTµ

subject to: ATµ ≥ c

� using same trick as before,
define: ti = −µi

l

o m n

s

t

3
1

2

2
3

3

2

3

0

7-15

Longest path (dual)

Recall the house-building example, a longest-path problem.

minimize
t

tend − tstart

subject to: tl − tstart ≥ 3

to − tl ≥ 3

tm − tl ≥ 1

. . .

Precisely the alternative problem for-
mulation we deduced in class!

l

o m n

s

t

3
1

2

2
3

3

2

3

0

7-16

Longest path (dual)

Recall the house-building example, a longest-path problem.

Key players:

� Primal variables: xij ∈ {0, 1}
� Dual constraints: tj − ti ≥ cij

Complementary slackness:

� if xij = 1 then tj − ti = cij
(longest path corresponds to
tight time constraints)

� if tj − ti > cij then xij = 0
(this path has slack)

l

o m n

s

t

3
1

2

2
3

3

2

3

0

7-17

Max-flow

We are given a directed graph and edge capacities. Find the
maximum flow that we can push from source to sink.

� Edges have max capacities

� Edges have zero cost except
feedback edge, with cost −1.

� Finding max flow is equivalent to
finding the minimum cost flow.

s

a

b

c

t

2,0

3,0

3,0
4,0

1,0

2,0

(edge capacity)
(cost)

∞,−1

7-18

Max-flow (primal)

� Primal problem:

max
xij

xts

s.t.


1 1 0 0 0 0 −1
−1 0 1 1 0 0 0
0 −1 −1 0 1 0 0
0 0 0 −1 0 1 0
0 0 0 0 −1 −1 1





xsa
xsb
xab
xac
xbt
xct
xts


=


0
0
0
0
0



0
0
0
0
0
0

 ≤

xsa
xsb
xab
xac
xbt
xct

 ≤

2
3
3
4
2
1



s

a

b

c

t

2,0

3,0

3,0
4,0

1,0

2,0

(edge capacity)
(cost)

∞,−1

7-19

Max-flow (dual)

� Dual problem:

min
λij ,µi

2λsa + 3λsb + 3λab + 4λac + 2λbt + λct

s.t.



1 −1 0 0 0
1 0 −1 0 0
0 1 −1 0 0
0 1 0 −1 0
0 0 1 0 −1
0 0 0 1 −1
−1 0 0 0 1




µs
µa
µb
µc
µt

+



λsa
λsb
λab
λac
λbt
λct
0


≥



0
0
0
0
0
0
1


λij ≥ 0, µi free

I µi are shift-invariant. Therefore
we may assume µs = 0.

I We want each λij small; no slack!

s

a

b

c

t

2,0

3,0

3,0
4,0

1,0

2,0

(edge capacity)
(cost)

7-20

Max-flow (dual)

� Dual problem:

min
λij ,µi

2λsa + 3λsb + 3λab + 4λac + 2λbt + λct

s.t.



−1 0 0 0
0 −1 0 0
1 −1 0 0
1 0 −1 0
0 1 0 −1
0 0 1 −1
0 0 0 1



µa
µb
µc
µt

+



λsa
λsb
λab
λac
λbt
λct
0


=



0
0
0
0
0
0
1


λij ≥ 0, µi free

I Rearrange constraints, isolate λij .

s

a

b

c

t

2,0

3,0

3,0
4,0

1,0

2,0

(edge capacity)
(cost)

7-21

Max-flow (dual)

� Dual problem:

min
λij ,µi

2λsa + 3λsb + 3λab + 4λac + 2λbt + λct

s.t. µs = 0

µa − µs = λsa

µb − µs = λsb

µb − µa = λab

µc − µa = λac

µt − µb = λbt

µt − µc = λct

µt = 1

λij ≥ 0, µi free

I Each path, e.g. s → a→ c → t
has: 0 = µs ≤ µa ≤ µc ≤ µt = 1

s

a

b

c

t

2,0

3,0

3,0
4,0

1,0

2,0

(edge capacity)
(cost)

µi ∈ {0, 1} for all i .

7-22

Max-flow (dual)

� Dual problem:

min
λij ,µi

2λsa + 3λsb + 3λab + 4λac + 2λbt + λct

s.t. Along each path s → i → · · · → j → t

exactly one edge p → q is chosen.

λpq = 1 and λij = 0 for all other edges.

I Each path is broken by cutting
edges. We are choosing the cut
with lowest total cost (min-cut).

Max flow = Min cut

s

a

b

c

t

2,0

3,0

3,0
4,0

1,0

2,0

(edge capacity)
(cost)

7-23

Max-flow summary

Primal problem:

� Each edge of the network has a maximum capacity.

� Pick how much commodity flows along each edge to
maximize the total amount transported from the start node
to the end node while obeying conservation constraints.
This total amount of flow is called the max flow.

Dual problem:

� Find a partition of the nodes into two subsets where the
first subset includes the start node and the second subset
includes the end node.

� Choose the partition that minimizes the sum of capacities
of all edges that connect both subsets. This total capacity
is called the min cut.

7-24

LP solvers

Modern LP solvers are very efficient. Problems with millions of
variables and/or constraints are routinely solved. Three main
categories of algorithms are used in practice for solving LPs:

� Simplex algorithms: traverse the surface of the feasible
polyhedron looking for the best vertex. (Clp, GLPK)

� Interior point: traverse the inside of the polyhedron and
move toward the best vertex. (GLPK, SCS, ECOS, Ipopt)

� Blended: a custom (proprietary) mixture of simplex and
interior point methods. (CPLEX, Gurobi, Mosek)

7-25

Simplex method

� Invented by George Dantzig in 1947.

� Named one of the “Top 10 algorithms of the 20th century”
by Computing in Science & Engineering Magazine.
Full list at: https://www.siam.org/pdf/news/637.pdf

� The basic idea:

I We know the solution is a vertex of the feasible polyhedron.

I Each vertex is characterized by the subset of the constraints
that have no slack; it’s just a system of linear equations!

I Start at a vertex, then pivot: swap out one of the
constraints in the no-slack subset so that the cost improves.

I Do this in a systematic way that avoids cycles. When we
can no longer improve, we are optimal!

7-26

https://www.siam.org/pdf/news/637.pdf

Simplex method

� With m constraints in n variables, the feasible polyhedron
can have roughly up to

(
m
n

)
vertices, a very large number!

� A cube in n dimensions has 2n vertices.

� By carefully designing the problem, the simplex method
may visit all the vertices! Look up the Klee–Minty cube.

� It is not known whether there is a more clever version of
simplex that is sub-exponential in the worst case.

Despite these difficulties, the simplex method works
very well in practice. For typical problems, its
performance scales linearly with m and n.

7-27

https://en.wikipedia.org/wiki/Klee%E2%80%93Minty_cube

Interior point methods

� Big family of optimization algorithms, dating back to
1950–1960. Can be used for solving convex nonlinear
optimization problems. Will revisit later in the course!

� Ellipsoid method when applied to LPs achieves
polynomial-time convergence (Khachiyan, 1979), but
typically much slower than simplex in practice.

� Specialized interior-point solvers developed for LPs in the
1980s are also polynomial-time and competitive with the
simplex method, especially for very large problems.

� Still active area of research!

7-28

Specialized algorithms

If the LP has a special form, specialized algorithms are often
vastly superior to generic simplex or interior point solvers.

� Network simplex method: special version of simplex
method for solving minimum-cost flow problems. Can be
100s of times faster than using ordinary simplex method.
Polynomial worst-case, and can be called in CPLEX.

� Graph searches: Djikstra’s algorithm, A* search, etc. Can
be used for example to find the shortest path in a graph.

� Assignment problems: Kuhn–Munkres, auction algorithm.

� Max-flow problems: Ford–Fulkerson, Orlin’s algorithm.

7-29

LP wrap-up

� Relevant courses at UW–Madison
I CS 525: linear programming methods

I CS 526: advanced linear programming

I CS 577: introduction to algorithms

These courses prove major results (e.g. zero duality gap), give

detailed explanations/analyses of simplex/graph algorithms.

� External resources
I EE 236A: Linear programming (UCLA)

http://www.seas.ucla.edu/∼vandenbe/ee236a/

I MATH 407: Linear programming (Univ. Washington)
https://www.math.washington.edu/∼burke/crs/407/

I 15.082J: Network optimization (MIT)
http://ocw.mit.edu/courses/sloan-school-of-
management/15-082j-network-optimization-fall-2010/

7-30

http://www.seas.ucla.edu/~vandenbe/ee236a/
https://www.math.washington.edu/~burke/crs/407/
http://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/
http://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/

	Dual flows and algorithms
	Duality review
	Minimum-cost flow dual
	Specialized flow duals
	Max-flow problems
	LP solvers
	Wrap-up

